Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 875
Filtrar
1.
Cell Mol Life Sci ; 81(1): 175, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597937

RESUMO

Phenotypic transformation of vascular smooth muscle cells (VSMCs) plays a crucial role in abdominal aortic aneurysm (AAA) formation. CARMN, a highly conserved, VSMC-enriched long noncoding RNA (lncRNA), is integral in orchestrating various vascular pathologies by modulating the phenotypic dynamics of VSMCs. The influence of CARMN on AAA formation, particularly its mechanisms, remains enigmatic. Our research, employing single-cell and bulk RNA sequencing, has uncovered a significant suppression of CARMN in AAA specimens, which correlates strongly with the contractile function of VSMCs. This reduced expression of CARMN was consistent in both 7- and 14-day porcine pancreatic elastase (PPE)-induced mouse models of AAA and in human clinical cases. Functional analyses disclosed that the diminution of CARMN exacerbated PPE-precipitated AAA formation, whereas its augmentation conferred protection against such formation. Mechanistically, we found CARMN's capacity to bind with SRF, thereby amplifying its role in driving the transcription of VSMC marker genes. In addition, our findings indicate an enhancement in CAMRN transcription, facilitated by the binding of NRF2 to its promoter region. Our study indicated that CARMN plays a protective role in preventing AAA formation and restrains the phenotypic transformation of VSMC through its interaction with SRF. Additionally, we observed that the expression of CARMN is augmented by NRF2 binding to its promoter region. These findings suggest the potential of CARMN as a viable therapeutic target in the treatment of AAA.


Assuntos
Aneurisma da Aorta Abdominal , RNA Longo não Codificante , Humanos , Camundongos , Animais , Suínos , RNA Longo não Codificante/genética , Músculo Liso Vascular , Fator 2 Relacionado a NF-E2/genética , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Modelos Animais de Doenças
2.
Atherosclerosis ; 391: 117492, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461759

RESUMO

BACKGROUND AND AIMS: Obesity increases the risk for abdominal aortic aneurysms (AAA) in humans and enhances angiotensin II (AngII)-induced AAA formation in C57BL/6 mice. We reported that deficiency of Serum Amyloid A (SAA) significantly reduces AngII-induced inflammation and AAA in both hyperlipidemic apoE-deficient and obese C57BL/6 mice. The aim of this study is to investigate whether SAA plays a role in the progression of early AAA in obese C57BL/6 mice. METHODS: Male C57BL/6J mice were fed a high-fat diet (60% kcal as fat) throughout the study. After 4 months of diet, the mice were infused with AngII until the end of the study. Mice with at least a 25% increase in the luminal diameter of the abdominal aorta after 4 weeks of AngII infusion were stratified into 2 groups. The first group received a control antisense oligonucleotide (Ctr ASO), and the second group received ASO that suppresses SAA (SAA-ASO) until the end of the study. RESULTS: Plasma SAA levels were significantly reduced by the SAA ASO treatment. While mice that received the control ASO had continued aortic dilation throughout the AngII infusion periods, the mice that received SAA-ASO had a significant reduction in the progression of aortic dilation, which was associated with significant reductions in matrix metalloprotease activities, decreased macrophage infiltration and decreased elastin breaks in the abdominal aortas. CONCLUSIONS: We demonstrate for the first time that suppression of SAA protects obese C57BL/6 mice from the progression of AngII-induced AAA. Suppression of SAA may be a therapeutic approach to limit AAA progression.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Humanos , Masculino , Animais , Camundongos , Angiotensina II/farmacologia , Proteína Amiloide A Sérica/genética , Oligonucleotídeos Antissenso/uso terapêutico , Camundongos Endogâmicos C57BL , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Aorta Abdominal , Obesidade , Modelos Animais de Doenças , Camundongos Knockout , Apolipoproteínas E
3.
Sci Rep ; 14(1): 5157, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431726

RESUMO

Abdominal aortic aneurysm (AAA) is a condition characterized by a pathological and progressive dilatation of the infrarenal abdominal aorta. The exploration of AAA feature genes is crucial for enhancing the prognosis of AAA patients. Microarray datasets of AAA were downloaded from the Gene Expression Omnibus database. A total of 43 upregulated differentially expressed genes (DEGs) and 32 downregulated DEGs were obtained. Function, pathway, disease, and gene set enrichment analyses were performed, in which enrichments were related to inflammation and immune response. AHR, APLNR, ITGA10 and NR2F6 were defined as feature genes via machine learning algorithms and a validation cohort, which indicated high diagnostic abilities by the receiver operating characteristic curves. The cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) method was used to quantify the proportions of immune infiltration in samples of AAA and normal tissues. We have predicted AHR, APLNR, ITGA10 and NR2F6 as feature genes of AAA. CD8 + T cells and M2 macrophages correlated with these genes may be involved in the development of AAA, which have the potential to be developed as risk predictors and immune interventions.


Assuntos
Aneurisma da Aorta Abdominal , Humanos , Receptores de Apelina , Aneurisma da Aorta Abdominal/genética , Aorta Abdominal , Algoritmos , Aprendizado de Máquina , Proteínas Repressoras
4.
Biochemistry (Mosc) ; 89(1): 130-147, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38467550

RESUMO

Aortic aneurysm (AA) is a life-threatening condition with a high prevalence and risk of severe complications. The aim of this review was to summarize the data on the role of long non-coding RNAs (lncRNAs) in the development of AAs of various location. Within less than a decade of studies on the role of lncRNAs in AA, using experimental and bioinformatic approaches, scientists have obtained the data confirming the involvement of these molecules in metabolic pathways and pathogenetic mechanisms critical for the aneurysm development. Regardless of the location of pathological process (thoracic or abdominal aorta), AA was found to be associated with changes in the expression of various lncRNAs in the tissue of the affected vessels. The consistency of changes in the expression level of lncRNA, mRNA and microRNA in aortic tissues during AA development has been recordedand regulatory networks implicated in the AA pathogenesis in which lncRNAs act as competing endogenous RNAs (ceRNA networks) have been identified. It was found that the same lncRNA can be involved in different ceRNA networks and regulate different biochemical and cellular events; on the other hand, the same pathological process can be controlled by different lncRNAs. Despite some similarities in pathogenesis and overlapping of involved lncRNAs, the ceRNA networks described for abdominal and thoracic AA are different. Interactions between lncRNAs and other molecules, including those participating in epigenetic processes, have also been identified as potentially relevant to the AA pathogenesis. The expression levels of some lncRNAs were found to correlate with clinically significant aortic features and biochemical parameters. Identification of regulatory RNAs functionally significant in the aneurysm development is important for clarification of disease pathogenesis and will provide a basis for early diagnostics and development of new preventive and therapeutic drugs.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Aneurisma da Aorta Abdominal/genética , RNA Mensageiro/metabolismo , 60414
5.
Eur J Pharmacol ; 968: 176397, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331337

RESUMO

Abdominal aortic aneurysm (AAA), a vascular degenerative disease, is a potentially life-threatening condition characterised by the loss of vascular smooth muscle cells (VSMCs), degradation of extracellular matrix (ECM), inflammation, and oxidative stress. Despite the severity of AAA, effective drugs for treatment are scarce. At low doses, terazosin (TZ) exerts antiapoptotic and anti-inflammatory effects in several diseases, but its potential to protect against AAA remains unexplored. Herein, we investigated the effects of TZ in two AAA animal models: Angiotensin II (Ang II) infusion in Apoe-/- mice and calcium chloride application in C57BL/6J mice. Mice were orally administered with TZ (100 or 1000 µg/kg/day). The in vivo results indicated that low-dose TZ alleviated AAA formation in both models. Low-dose TZ significantly reduced aortic pulse wave velocity without exerting an apparent antihypertensive effect in the Ang II-induced AAA model. Paternally expressed gene 3 (Peg3) was identified via RNA sequencing as a novel TZ target. PEG3 expression was significantly elevated in both mouse and human AAA tissues. TZ suppressed PEG3 expression and reduced the abundance of matrix metalloproteinases (MMP2/MMP9) in the tunica media. Functional experiments and molecular analyses revealed that TZ (10 nM) treatment and Peg3 knockdown effectively prevented Ang II-induced VSMC senescence and apoptosis in vitro. Thus, Peg3, a novel target of TZ, mediates inflammation-induced VSMC apoptosis and senescence. Low-dose TZ downregulates Peg3 expression to attenuate AAA formation and ECM degradation, suggesting a promising therapeutic strategy for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Músculo Liso Vascular , Prazosina/análogos & derivados , Camundongos , Humanos , Animais , Análise de Onda de Pulso , Camundongos Knockout , Camundongos Endogâmicos C57BL , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/genética , Apoptose , Inflamação/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Modelos Animais de Doenças , Miócitos de Músculo Liso , Fatores de Transcrição Kruppel-Like/metabolismo
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166919, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38251428

RESUMO

Abdominal aortic aneurysm (AAA) is typically asymptomatic but a devastating cardiovascular disorder, with overall mortality exceeding 80 % once it ruptures. Some patients with AAA may also have comorbid metabolic syndrome (MS), suggesting a potential common underlying pathogenesis. Mitochondrial dysfunction has been reported as a key factor contributing to the deterioration of both AAA and MS. However, the intricate interplay between metabolism and mitochondrial function, both contributing to the development of AAA, has not been thoroughly explored. In this study, we identified candidate genes related to mitochondrial function in AAA and MS. Subsequently, we developed a nomoscore model comprising hub genes (PINK1, ACSL1, CYP27A1, and SLC25A11), identified through the application of two machine learning algorithms, to predict AAA. We observed a marked disparity in immune infiltration profiles between high- and low-nomoscore groups. Furthermore, we confirmed a significant upregulation of the expression of the four hub genes in AAA tissues. Among these, ACSL1 showed relatively higher expression in LPS-treated RAW264.7 cell lines, while CYP27A1 exhibited a notable decrease. Moreover, SLC25A11 displayed a significant upregulation in AngII-treated VSMCs. Conversely, the expression level of PINK1 declined in LPS-stimulated RAW264.7 cell lines but significantly increased in AngII-treated VSMCs. In vivo experiments revealed that the activation of PINK1-mediated mitophagy inhibited the development of AAA in mice. In this current study, we have innovatively identified four mitochondrial function-related genes through integrated bioinformatic analysis. This discovery sheds light on the regulatory mechanisms and unveils promising therapeutic targets for the comorbidity of AAA and MS.


Assuntos
Aneurisma da Aorta Abdominal , Síndrome Metabólica , Proteínas Quinases , Animais , Humanos , Camundongos , Aneurisma da Aorta Abdominal/genética , Lipopolissacarídeos , Síndrome Metabólica/complicações , Síndrome Metabólica/genética , Mitocôndrias/genética , Proteínas Quinases/genética
7.
Medicine (Baltimore) ; 103(1): e36843, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181271

RESUMO

Cholangiocarcinoma occurs when there is a malignant tumor in the bile duct system. Renal cancer originates from renal tubular epithelial cells. Abdominal aortic aneurysm (AAA) is a permanently localized dilation caused by a lesion or injury to abdominal aortic wall. However, the relationship between TYROBP and cholangiocarcinoma, renal cancer and AAA remains unclear. The profiles of cholangiocarcinoma dataset GSE107943, renal cell carcinoma dataset GSE213324, and AAA dataset GSE47472 were downloaded from the GEO database using the platforms GPL18573, GPL24676, and GPL10558. DEGs were screened, WGCNA was performed as well as construction and analysis of PPI network. Functional enrichment analysis, GSEA, heat map of gene expression, survival analysis, and immune infiltration analysis were performed. The most relevant diseases to core genes were found by CTD. The GSE107943 dataset identified 3383 DEGs for cholangiocarcinoma, GSE47472 identified 95 DEGs for abdominal aortic aneurysm, and GSE213324 identified 10245 DEGs for renal cell carcinoma. For the GSE107943 cholangiocarcinoma dataset, GO analysis revealed enrichment in immune response, cell adhesion, extracellular space, and oxidoreductase activity. KEGG analysis indicated enrichment in metabolic pathways, the PI3K-Akt signaling pathway, cell apoptosis, the cell cycle, and the NF-kappa B signaling pathway. In the GSE47472 AAA dataset, GO analysis showed enrichment in neuroblast differentiation, cardiac muscle myofilament complex, and alkaline binding. KEGG analysis indicated enrichment in mRNA surveillance pathway and purine metabolism. In the GSE213324 renal cell carcinoma dataset, GO analysis indicated enrichment in immune system processes, cell adhesion, and membrane parts. KEGG analysis showed enrichment in cytokine-cytokine receptor interaction, calcium signaling pathway, and hematopoietic cell lineage. Furthermore, for cholangiocarcinoma (GSE107943), enriched terms associated with DEGs were in metabolic pathways, cell apoptosis, and the cell cycle. For AAA (GSE47472), enriched terms were in alkaline binding and cellular redox homeostasis. For renal cell carcinoma (GSE213324), enriched terms were in biological adhesion, regulation of immune system processes, and cell surface. Common core genes (ADH6, AGXT, CYP3A43, TYROBP) were identified for cholangiocarcinoma, renal cell carcinoma, and AAA. ADH6 and TYROBP were associated with cholangiocarcinoma, AAA, renal tumors, kidney diseases, atherosclerosis, and inflammation. TYROBP is abnormally expressed in cholangiocarcinoma, renal cancer and abdominal aortic aneurysm.


Assuntos
Aneurisma da Aorta Abdominal , Neoplasias dos Ductos Biliares , Carcinoma de Células Renais , Colangiocarcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Fosfatidilinositol 3-Quinases , Neoplasias Renais/genética , Colangiocarcinoma/genética , Aneurisma da Aorta Abdominal/genética , Sinalização do Cálcio , Ductos Biliares Intra-Hepáticos , Proteínas de Membrana , Proteínas Adaptadoras de Transdução de Sinal
8.
Vascul Pharmacol ; 154: 107279, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272196

RESUMO

The antibiotic doxycycline is known to inhibit inflammation and was therefore considered as a therapeutic to prevent abdominal aortic aneurysm (AAA) growth. Yet mitochondrial dysfunction is a key-characteristic of clinical AAA disease. We hypothesize that doxycycline impairs mitochondrial function in the aorta and aortic smooth muscle cells (SMCs). Doxycycline induced mitonuclear imbalance, reduced proliferation and diminished expression of typical contractile smooth muscle cell (SMC) proteins. To understand the underlying mechanism, we studied krüppel-like factor 4 (KLF4). The expression of this transcription factor was enhanced in SMCs after doxycycline treatment. Knockdown of KLF4, however, did not affect the doxycycline-induced SMC phenotypic changes. Then we used the bioenergetics drug elamipretide (SS-31). Doxycycline-induced loss of SMC contractility markers was not rescued, but mitochondrial genes and mitochondrial connectivity improved upon elamipretide. Thus while doxycycline is anti-inflammatory, it also induces mitochondrial dysfunction in aortic SMCs and causes SMC phenotypic switching, potentially contributing to aortic aneurysm pathology. The drug elamipretide helps mitigate the harmful effects of doxycycline on mitochondrial function in aortic SMC, and may be of interest for treatment of aneurysm diseases with pre-existing mitochondrial dysfunction.


Assuntos
Aneurisma da Aorta Abdominal , Doenças Mitocondriais , Humanos , Doxiciclina/efeitos adversos , Doxiciclina/metabolismo , Aorta/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/genética , Miócitos de Músculo Liso/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia
9.
Food Funct ; 15(1): 139-157, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38050424

RESUMO

Pterostilbene (PTE), a natural stilbene found in blueberries and several varieties of grapes, has several pharmacological activities, including anti-inflammatory and antioxidative activities. However, its role in abdominal aortic aneurysm (AAA), which is a severe inflammatory vascular disease, remains incompletely understood. In this study, we investigated the protective effects of natural stilbene PTE on AAA formation and the underlying mechanism. Two AAA mouse models (Ang II-induced model and PPE-induced model) were used to examine the effect of PTE on AAA formation. We showed that PTE administration attenuated AAA formation in mice. Furthermore, we found that PTE significantly inhibited inflammatory responses in mouse aortas, as PTE suppressed macrophage pyroptosis and prevented macrophage infiltration in aortas, resulting in reduced expression of pro-inflammatory cytokines in aortas. We also observed similar results in LPS + ATP-treated Raw 264.7 cells (a macrophage cell line) and primary peritoneal macrophages in vitro. We showed that pretreatment with PTE restrained inflammatory responses in macrophages by inhibiting macrophage pyroptosis. Mechanistically, miR-146a-5p and TRAF6 interventions in vivo and in vitro were used to investigate the role of the miR-146a-5p/TRAF6 axis in the beneficial effect of PTE on macrophage pyroptosis and AAA. We found that PTE inhibited macrophage pyroptosis by miR-146a-5p-mediated suppression of downstream TRAF6 expression. Moreover, miR-146a-5p knockout or TRAF6 overexpression abrogated the protective effect of PTE on macrophage pyroptosis and AAA formation. These findings suggest that miR-146a-5p/TRAF6 axis activation by PTE protects against macrophage pyroptosis and AAA formation. PTE might be a promising agent for preventing inflammatory vascular diseases, including AAA.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , Estilbenos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Transdução de Sinais , Piroptose , Macrófagos , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/genética , Estilbenos/farmacologia
10.
Gene ; 898: 148036, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38036076

RESUMO

Abdominal aortic aneurysm (AAA) is a fatal cardiovascular disorder with high mortality and morbidity rates. To date, no drug has shown to significantly alleviate the risk of AAA. Previous studies have indicated that hyperhomocysteinemia (HHcy) significantly increases the incidence of AAA by disrupting endothelial cell homeostasis; however, the potential molecular mechanisms require clarification. Herein, we aimed to integrate transcriptomics analysis and molecular biology experiments to explore the potential molecular targets by which HHcy may increase the incidence of AAA. We integrated two AAA data profiles (GSE57691 and GSE7084) based on previously published microarray ribonucleic acid sequencing (RNAseq) data from the GEO database. Additionally, 500 µM homocysteine-treated human aorta endothelium cells microarray dataset (GSE175748) was downloaded and processed. Subsequently, single-cell RNA-seq profiles of the aortic aneurysms (GSE155468) were downloaded, scaled, and processed for further analysis. The microarray profiles analysis demonstrated that the Ras association domain family member 2 (RASSF2) and interleukin (IL)-1ß are potentially the target genes involved in the HHcy-mediated aggravation of AAA formation. Single-cell RNAseq analysis revealed that RASSF2 might impair endothelial cell function by increasing inflammatory cell infiltration to participate in AAA formation. Finally, we conducted reverse transcription quantitative polymerase chain reaction and immunofluorescence analysis to validate the up-regulated mRNA expression of RASSF2 (p = 0.008) and IL-1ß (p = 0.002) in AAA tissue compared to control tissue. Immunofluorescence staining revealed overexpression of RASSF2 protein in AAA tissue sections compared to control tissue (p = 0.037). Co-localization of RASSF2 and the aortic endothelium cell marker, CD31, was observed in tissue sections, indicating the potential involvement of RASSF2 in aortic endothelial cells. To summarise, our preliminary study revealed that HHcy may worsen AAA formation by up-regulating the expression of RASSF2 and IL-1ß in aortic endothelium cells.


Assuntos
Aneurisma da Aorta Abdominal , Hiper-Homocisteinemia , Humanos , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Células Endoteliais/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Perfilação da Expressão Gênica , Endotélio Vascular/metabolismo , Proteínas Supressoras de Tumor/genética
12.
Ann Vasc Surg ; 99: 366-379, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37922957

RESUMO

BACKGROUND: Small abdominal aortic aneurysms (AAAs) are asymptomatic but can potentially lead to rupture if left undetected. To date, there is a lack of simple nonradiologic routine tests available for diagnosing AAAs. MicroRNAs (miRNAs) have been proven to be good-quality biomarkers in several diseases, including AAA. METHODS: An attempt to identify a panel of circulating miRNAs with differential expression in AAAs via next-generation sequencing (NGS) was performed in serum samples: small AAAs (n = 3), large AAAs (n = 3), and controls (n = 3). For miR-24, validation with real-time polymerase chain reaction (PCR) was undertaken in a larger group (n = 80). RESULTS: In the NGS study, 23 miRNAs were identified as differentially expressed (with statistical significance) in small AAAs in comparison with controls. Among them, miR-24 showed the largest upregulation with 23-fold change (log2FC 4.5, P = 0.024). For large AAAs compared with controls, and small AAAs compared with large AAAs, a panel of 33 and 131 miRNAs showed statistically significant differential expression, respectively. Based on the results of the NGS stage, a literature search was performed, and information regarding AAA pathogenesis, coronary artery disease, and peripheral arterial disease was documented where applicable: miR-24, miR-103, miR-193a, miR-486, miR-582, and miR-3663. Of these 6 miRNAs, miR-24 was chosen for further validation with real-time PCR. Additionally, in the NGS study analysis, 17 miRNAs were common between the small-large AAAs, small AAAs-controls, and large AAAs-controls comparisons: miR-7846, miR-3195, miR-486-2, miR-3194, miR-5589, miR-1538, miR-3178, miR-4771-1, miR-5695, miR-6504, miR-1908, miR-6823, miR-3159, miR-23a, miR-7853, miR-496, and miR-193a. Interestingly, in the validation stage with real-time PCR, miR-24 was found downregulated in small and large AAAs compared with controls (fold-changes: 0.27, P = 0.015 and 0.15, P = 0.005, respectively). No correlation was found between average Ct values, aneurysm diameter, and patients' age. CONCLUSIONS: Our findings further highlight the importance of miR-24 as a potential biomarker as well as a therapeutic target for abdominal aneurysmal disease. Future research and validation of a panel of miRNAs for AAA would aid in diagnosis and discrimination between diseases with overlapping pathogeneses.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Resultado do Tratamento , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/genética , Biomarcadores , Sequenciamento de Nucleotídeos em Larga Escala
13.
Eur J Prev Cardiol ; 31(1): 61-74, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37665957

RESUMO

AIMS: The aim of this study is to investigate how genetic variations in genes related to oxidative stress, intake of antioxidant vitamins, and any potential interactions between these factors affect the incidence of intact abdominal aortic aneurysm (AAA) and its rupture (rAAA), accounting for sex differences where possible. METHODS AND RESULTS: The present retrospective cohort study (n = 25 252) uses baseline single-nucleotide polymorphisms (SNPs) and total antioxidant vitamin intake data from the large population-based, Malmö Diet and Cancer Study. Cumulative incidence of intact AAA was 1.6% and of rAAA 0.3% after a median follow-up of 24.3 years. A variant in NOX3 (rs3749930) was associated with higher rAAA risk in males [adjusted hazard ratio (aHR): 2.49; 95% confidence interval (CI): 1.36-4.35] and the overall population (aHR: 1.88; 95% CI: 1.05-3.37). Higher intakes of antioxidant vitamins, riboflavin, and folate were associated with 20% and 19% reduced intact AAA incidence, respectively. Interestingly, the inverse associations between riboflavin and vitamin D intake with intact AAA incidence were stronger in the individuals carrying the NOX3 variant as compared with the wild-type recessive genotype, i.e. by 60% and 66%, respectively (P for interaction < 0.05). Higher riboflavin intake was associated with a 33% male-specific intact AAA risk reduction, while higher intake of vitamin B12 intake was associated with 55% female-specific intact AAA risk increase; both these associations were significantly modified by sex (P for interaction < 0.05). CONCLUSIONS: Our findings highlight the role of oxidative stress genetic variations and antioxidant vitamin intake in AAA. Although a low AAA/rAAA sample size limited some analyses, especially in females, our findings highlight the need for future randomized controlled trials and mechanistic studies, to explore the potential benefits of antioxidant vitamins while accounting for genetic and sex differences.


Abdominal aortic aneurysm (AAA) is an old age-related disease with lethal complication in the form of rupture (rAAA). Present study aimed to understand how genetic variations in oxidative stress­related genes and the intake of antioxidant vitamins influence the risk of AAA and rAAA. The study identified specific genetic differences associated with an increased risk of rAAA. Interestingly, higher intakes of riboflavin and folate were linked to a reduced risk of AAA. Interestingly, we observe that both genetics and sex modify the effect of vitamin intake on intact AAA risk, providing new insight into the individual differences in the benefits of vitamins. Although the low sample for rAAA and females limits some conclusions, the findings emphasize the need for future randomized controlled trials to explore the potential benefits of antioxidant vitamins while accounting for genetic and sex differences.


Assuntos
Aneurisma da Aorta Abdominal , Ruptura Aórtica , Humanos , Masculino , Feminino , Estudos Retrospectivos , Antioxidantes , Suécia/epidemiologia , Fatores de Risco , Aneurisma da Aorta Abdominal/diagnóstico , Aneurisma da Aorta Abdominal/epidemiologia , Aneurisma da Aorta Abdominal/genética , Ruptura Aórtica/complicações , Vitamina A , Estresse Oxidativo , Vitaminas , Riboflavina , Variação Genética
14.
Gene ; 897: 148068, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070790

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is a permanent dilation of the abdominal aorta, with a high mortality rate when rupturing. Although lots of piRNA pathway genes (piRPGs) have recently been linked to both neoplastic and non-neoplastic illnesses, their role in AAA is still unknown. Utilizing integrative bioinformatics methods, this research discovered piRPGs as biomarkers for AAA and explore possible molecular mechanisms. METHODS: The datasets were obtained from the Gene Expression Omnibus and piRPGs were identified from the Genecards database. The "limma" and "clusterProfiler" R-packages were used to discover differentially expressed genes and perform enrichment analysis, respectively. Hub piRPGs were further filtered using least absolute shrinkage and selection operator regression, random forests, as well as receiver operating characteristic curve. Additionally, multi-factor logistic regression (MLR), extreme gradient boosting (XGboost), and artificial neural network (ANN) were employed to construct prediction models. The relationship between hub piRPGs and immune infiltrating cells and sgGSEA were further studied. The expression of hub piRPGs was verified by qRT-PCR, immunohistochemistry, and western blotting in AAA and normal vascular tissues and analyzed by scRNA-seq in mouse AAA model. SRAMP and cMAP database were utilized for the prediction of N6-methyladenosine (m6A) targets therapeutic drug. RESULTS: 34 differentially expressed piRPGs were identified in AAA and enriched in pathways of immune regulation and gene silence. Three piRPGs (PPP1R12B, LRP10, and COL1A1) were further screened as diagnostic genes and used to construct prediction model. Compared with MLR and ANN, Xgboost showed better predictive ability, and PPP1R12B might have the ability to distinguish small and large AAA. Furthermore, the expression levels of PPP1R12B and COL1A1 were consistent with the results of bioinformatics analysis, and PPP1R12B showed a downward trend that may be related to m6A. CONCLUSION: The results suggest that piRPGs might serve a significant role in AAA. PPP1R12B, COL1A1, and LRP10 had potential as diagnostic-specific biomarkers for AAA and performed better in XGboost model. The expression and localization of PPP1R12B and COL1A1 were experimentally verified. Besides, downregulation of PPP1R12B caused by m6A might contribute to the formation of AAA.


Assuntos
Adenosina , Aneurisma da Aorta Abdominal , RNA de Interação com Piwi , Animais , Humanos , Camundongos , Adenosina/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Biomarcadores , Modelos Animais de Doenças , Regulação para Baixo
15.
J Am Coll Cardiol ; 82(24): 2265-2276, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38057068

RESUMO

BACKGROUND: Lp(a) (lipoprotein[a])-lowering therapy to reduce cardiovascular disease is under investigation in phase 3 clinical trials. High Lp(a) may be implicated in peripheral artery disease (PAD), abdominal aortic aneurysms (AAAs), and major adverse limb events (MALE). OBJECTIVES: The authors investigated the association of high Lp(a) levels and corresponding LPA genotypes with risk of PAD, AAA, and MALE. METHODS: The authors included 108,146 individuals from the Copenhagen General Population Study. During follow-up, 2,450 developed PAD, and 1,251 AAAs. Risk of MALE was assessed in individuals with PAD at baseline and replicated in the Copenhagen City Heart Study. RESULTS: Higher Lp(a) was associated with a stepwise increase in risk of PAD and AAA (P for trend <0.001). For individuals with Lp(a) levels ≥99th (≥143 mg/dL, ≥307 nmol/L) vs <50th percentile (≤9 mg/dL, ≤17 nmol/L), multivariable-adjusted HRs were 2.99 (95% CI: 2.09-4.30) for PAD and 2.22 (95% CI: 1.21-4.07) for AAA. For individuals with PAD, the corresponding incidence rate ratio for MALE was 3.04 (95% CI: 1.55-5.98). Per 50 mg/dL (105 nmol/L) genetically higher Lp(a) risk ratios were 1.39 (95% CI: 1.24-1.56) for PAD and 1.21 (95% CI: 1.01-1.44) for AAA, consistent with observational risk ratios of 1.33 (95% CI: 1.24-1.43) and 1.27 (95% CI: 1.15-1.41), respectively. In women smokers aged 70 to 79 years with Lp(a) <50th and ≥99th percentile, absolute 10-year risks of PAD were 8% and 21%, and equivalent risks in men 11% and 29%, respectively. For AAA, corresponding risks were 2% and 4% in women, and 5% and 12% in men. CONCLUSIONS: High Lp(a) levels increased risk of PAD, AAA, and MALE by 2- to 3-fold in the general population, opening opportunities for prevention given future Lp(a)-lowering therapies.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Aórtico , Doença Arterial Periférica , Feminino , Humanos , Masculino , Aneurisma da Aorta Abdominal/epidemiologia , Aneurisma da Aorta Abdominal/genética , Lipoproteína(a) , Doença Arterial Periférica/epidemiologia , Fatores de Risco
16.
Aging (Albany NY) ; 15(24): 15287-15323, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38112597

RESUMO

Pyrocytosis is involved in the development of abdominal aortic aneurysm (AAA), we explored the pyrocytosis-related hub genes in AAA and conducted a diagnostic model based on the pyrocytosis-related genes score (PRGs). A total of 2 bulk RNA-seq (GSE57691 and GSE47472) datasets and pyrocytosis-related genes were integrated to obtain 24 pyrocytosis-related different expression genes (DEGs). The LASSO Cox regression analysis was conducted to filter out 7 genes and further establish the nomogram signature based on the PRGs that exhibited a good diagnosis value. Weighted gene co-expression network analysis (WGCNA) established 14 gene modules and further identified 6 hub genes which were involved in the regulatory process of pyrocytosis in AAA. At the single cell level, we further identified 3 immune cells were highly associated with the pyrocytosis process in AAA. Finally, the cell-cell communication demonstrated that fibroblasts and endothelial cells and myeloid cells maintained close communications. Here, we identified the dysfunctional expressed pyrocytosis-related genes and immune cells in AAA, which provide a comprehensive understanding of the pathogenesis of AAA.


Assuntos
Aneurisma da Aorta Abdominal , Células Endoteliais , Humanos , RNA-Seq , Análise da Expressão Gênica de Célula Única , Aneurisma da Aorta Abdominal/genética , Perfilação da Expressão Gênica
17.
PLoS One ; 18(12): e0289966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38100461

RESUMO

Abdominal aortic aneurysm (AAA), an extremely dangerous vascular disease with high mortality, causes massive internal bleeding due to aneurysm rupture. To boost the research on AAA, efforts should be taken to organize and link the information about AAA-related genes and their functions. Currently, most researchers screen through genetic databases manually, which is cumbersome and time-consuming. Here, we developed "AAAKB" a manually curated knowledgebase containing genes, SNPs and pathways associated with AAA. In order to facilitate researchers to further explore the mechanism network of AAA, AAAKB provides predicted genes that are potentially associated with AAA. The prediction is based on the protein interaction information of genes collected in the database, and the random forest algorithm (RF) is used to build the prediction model. Some of these predicted genes are differentially expressed in patients with AAA, and some have been reported to play a role in other cardiovascular diseases, illustrating the utility of the knowledgebase in predicting novel genes. Also, AAAKB integrates a protein interaction visualization tool to quickly determine the shortest paths between target proteins. As the first knowledgebase to provide a comprehensive catalog of AAA-related genes, AAAKB will be an ideal research platform for AAA. Database URL: http://www.lqlgroup.cn:3838/AAAKB/.


Assuntos
Aneurisma da Aorta Abdominal , Bases de Dados Genéticas , Humanos , Aneurisma da Aorta Abdominal/genética
18.
Medicina (Kaunas) ; 59(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37893562

RESUMO

Background and Objectives: This study aims to identify the minor allele of the single nucleotide polymorphisms (SNPs) DAB2IP rs7025486, IL6R rs2228145, CDKN2BAS rs10757278, LPA rs3798220, LRP1 rs1466535, and SORT1 rs599839 in order to assess the risk of abdominal aortic aneurysm (AAA) formation and define the linkage among these SNPs. Materials and Methods: A case-control study with AAA patients (AAA group) and non-AAA controls (control group) was carried out in a study population. DNA was isolated from whole blood samples; the SNPs were amplified using PCR and sequenced. Results: In the AAA group of 148 patients, 87.2% of the patients were male, 64.2% had a history of smoking, and 18.2% had relatives with AAA. The mean ± SD of age, BMI, and aneurysmal diameter in the AAA group were 74.8 ± 8.3 years, 27.6 ± 4.6 kg/m2, and 56.2 ± 11.8 mm, respectively. In comparison with 50 non-AAA patients, there was a significantly elevated presence of the SNPs DAB2IP rs7025486[A], CDKN2BAS rs10757278[G], and SORT1 rs599839[G] in the AAA group (p-values 0.040, 0.024, 0.035, respectively), while LPA rs3798220[C] was significantly higher in the control group (p = 0.049). A haplotype investigation showed that the SNPs DAB2IP, CDKN2BAS, and IL6R rs2228145[C] were significantly elevated in the AAA group (p = 0.037, 0.037, and 0.046) with minor allele frequencies (MAF) of 25.5%, 10.6%, and 15.4%, respectively. Only DAB2IP and CDKN2BAS showed significantly higher occurrences of a mutation (p = 0.028 and 0.047). Except for LPA, all SNPs were associated with a large aortic diameter in AAA (p < 0.001). Linkage disequilibrium detection showed that LPA to DAB2IP, to IL6R, to CDKN2BAS, and to LRP1 rs1466535[T] had D' values of 70.9%, 80.4%, 100%, and 100%, respectively. IL6R to LRP1 and to SORT1 had values for the coefficient of determination (r2) of 3.9% and 2.2%, respectively. Conclusions: In the investigated study population, the SNPs CDKN2BAS rs10757278, LPA rs3798220, SORT1 rs599839, DAB2IP rs7025486, and IL6R rs2228145 were associated with the development of abdominal aortic aneurysms. Individuals with risk factors for atherosclerosis and/or a family history of AAA should be evaluated using genetic analysis.


Assuntos
Aneurisma da Aorta Abdominal , Predisposição Genética para Doença , Humanos , Masculino , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único/genética , Aneurisma da Aorta Abdominal/genética , Fatores de Risco , Inflamação , Apoptose , Colesterol , Proteínas Ativadoras de ras GTPase/genética
19.
Clinics (Sao Paulo) ; 78: 100298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37897936

RESUMO

OBJECTIVES: Abdominal Aortic Aneurysm (AAA) is a complex disease with both genetic and environmental risk factors. This study aimed to examine the potential association of the +276G/T and -420C>G polymorphisms in the resistin gene with AAA susceptibility and progression. METHOD: We performed a retrospective study involving AAA patients and healthy controls, assessing the distribution of the +276G/T and -420C>G genotypes in both groups. Hardy-Weinberg equilibrium was assessed for both polymorphisms. Logistic regression was used to explore the influence of these genotypes on AAA occurrence and progression, adjusting for relevant confounders. RESULTS: The distribution of +276G/T polymorphism did not significantly differ between AAA patients and controls. Conversely, a significant difference was observed in the genotype distribution of -420C>G polymorphism between the two groups. The CC genotype and CC/CG genotypes of -420C>G polymorphism were found to be associated with an increased risk and progression of AAA. CONCLUSIONS: The -420C>G polymorphism, particularly the CC genotype and CC/CG genotypes, might play a substantial role in AAA susceptibility and progression. The present findings underscore the need for further investigations to confirm these associations and fully elucidate the role of the resistin gene in AAA.


Assuntos
Adiponectina , Aneurisma da Aorta Abdominal , Humanos , Adiponectina/genética , Aneurisma da Aorta Abdominal/genética , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Resistina/genética , Estudos Retrospectivos
20.
Nat Genet ; 55(11): 1831-1842, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845353

RESUMO

Abdominal aortic aneurysm (AAA) is a common disease with substantial heritability. In this study, we performed a genome-wide association meta-analysis from 14 discovery cohorts and uncovered 141 independent associations, including 97 previously unreported loci. A polygenic risk score derived from meta-analysis explained AAA risk beyond clinical risk factors. Genes at AAA risk loci indicate involvement of lipid metabolism, vascular development and remodeling, extracellular matrix dysregulation and inflammation as key mechanisms in AAA pathogenesis. These genes also indicate overlap between the development of AAA and other monogenic aortopathies, particularly via transforming growth factor ß signaling. Motivated by the strong evidence for the role of lipid metabolism in AAA, we used Mendelian randomization to establish the central role of nonhigh-density lipoprotein cholesterol in AAA and identified the opportunity for repurposing of proprotein convertase, subtilisin/kexin-type 9 (PCSK9) inhibitors. This was supported by a study demonstrating that PCSK9 loss of function prevented the development of AAA in a preclinical mouse model.


Assuntos
Aneurisma da Aorta Abdominal , Estudo de Associação Genômica Ampla , Humanos , Animais , Camundongos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Subtilisina , Pró-Proteína Convertases , Aneurisma da Aorta Abdominal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...